

Division of Strength of Materials and Structures

Faculty of Power and Aeronautical Engineering

Finite element method (FEM1)

Lecture 2A. The boundary value problem of solid mechanics in the FEM approach

03.2025

Boundary value problem of solid body mechanics

Nodal approximation inside the finite element with n - nodes

 $[N(\xi, \eta, \zeta)]$ – matrix of shape functions $3 \times n_{\rho}$ $n_e = n \cdot n_p$ n_e – no. of degrees of freedom in FE n_p – no. of degrees of freedom per node local vector of nodal v_n parameters е

 $3 \times n_e$

 3×1

 $n_e \times 1$

Matrix of shape functions

Examples of finite elements

Example 1: shape functions for a finite element representing a strut

Strain components

normal strains:

$$\varepsilon_{\chi} = \frac{(A'B')_{\chi} - AB}{AB} = \frac{(dx + u + \frac{\partial u}{\partial \chi} dx - u) - dx}{dx} = \frac{\partial u}{\partial \chi}$$
$$\varepsilon_{\chi} = \frac{\partial v}{\partial y} \quad ; \quad \varepsilon_{Z} = \frac{\partial w}{\partial z}$$

shear strains:

y

Strain tensor. Vector of strain components

vector of strain components:

 $\neg \mathcal{E}_{\chi}$

 $1 \times 3 3 \times 6$

 $1/2\gamma_{yx}$

 \mathcal{E}_{χ}

y A |

Strain – displacement matrix of a finite element

nodal approximation in a finite element:

 $\{u\} = [N(\xi,\eta,\zeta)]\{q\}_e$ 3×1 3×n_e n_e×1

vector of strain components in a finite element:

 $\{\varepsilon\} = [R]\{u\} = [R][N]\{q\}_e = [B]\{q\}_e$ $6 \times 1 \quad 6 \times 3 \quad 3 \times 1 \quad 6 \times 3 \quad 3 \times n_e \quad n_e \times 1 \quad 6 \times n_e \quad n_e \times 1$ $\begin{bmatrix} \varepsilon \end{bmatrix} = \begin{bmatrix} q \end{bmatrix}_e \begin{bmatrix} B \end{bmatrix}^T$ $1 \times 6 \qquad 1 \times n_e \quad n_e \times 6$

$$\begin{bmatrix} B \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} N \end{bmatrix} - strain - displacement matrix$$

Stress components

normal stresses:

$$\sigma_{\chi}$$
 ; σ_{y} ; σ_{z}

positive value - tension, negative value - compression

shear stress components:

$$\tau_{xy}$$
; τ_{yz} ; τ_{zx} ; $\tau_{ij} = \tau_{ji}$

Von Mises stress:

$$\sigma_{EQV} = \sqrt{\frac{1}{2} \left(\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 + (\sigma_z - \sigma_x)^2 \right) + 3(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{zx}^2)}$$
Fresca stress:
$$\sigma_{INT} = \sigma_1 - \sigma_3 = 2\tau_{max}$$
the first the third the third principal stress pr

10

Stress tensor. Vector of stress components

stress tensor:

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{bmatrix} \equiv \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$

in coordinate system x, y, z

in the principal coordinate system

vector of stress components:

$$\{\sigma\} = \begin{cases} \sigma_{\chi} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{yz} \\ \tau_{zy} \end{cases}$$

Constitutive matrix

linear isotropic material (Hooke's law):

constitutive matrix:

E - Young's modulus, v - Poisson's ratio

Example 2: uniaxial tensile test

$$\sigma_{x} = \frac{F}{A_{0}} ; \quad \varepsilon_{x} = \frac{L-L_{0}}{L_{0}} ; \quad \varepsilon_{y} = \varepsilon_{z} = \varepsilon_{T}$$
elastic strain Energy:

$$U = \frac{1}{2} \sigma_{x} \varepsilon_{x} A_{0} L_{0}$$

$$\begin{cases} \sigma_{x} \\ 0 \\ \varepsilon_{x1} \\ \varepsilon_{x0} \\ \varepsilon_{x1} \\ \varepsilon_{x0} \\ \varepsilon_{x1} \\ \varepsilon_{x2} \\ \varepsilon_$$

Example 3: pure shear γ_{xy} au_{xy} ; γ_{xy} τ_{xy} $\{\sigma\} = [D] \{\varepsilon\}$ 6 × 1 $6 \times 6 \quad 6 \times 1$ $= \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu & 0 & 0\\ \nu & 1-\nu & \nu & 0 & 0\\ \nu & \nu & 1-\nu & 0 & 0\\ 0 & 0 & 0 & 0.5-\nu & 0\\ 0 & 0 & 0 & 0.5-\nu \end{bmatrix}$ 0 0 $0 \\ 0 \\ \gamma_{xy}$ 0 0 0 τ_{xy} 0 0 0 0 0.5 - v0 0 0 0

4th equation:

$$\tau_{xy} = \frac{E}{(1+\nu)(1-2\nu)} (0.5-\nu)\gamma_{xy} = \frac{E}{2(1+\nu)(0.5-\nu)} (0.5-\nu)\gamma_{xy} = \frac{E}{2(1+\nu)} \gamma_{xy} \rightarrow \frac{E}{2(1+\nu)(1-2\nu)} (0.5-\nu)\gamma_{xy} = \frac{E}{2(1+\nu)(1-2\nu)} \gamma_{xy} + \frac{E}{2(1+\nu)(1-2\nu)} \gamma_{xy} = \frac{E}$$

$$\tau_{xy} = G \gamma_{xy}$$
 $G = \frac{E}{2(1+\nu)} - Kirchof's modulus (shear modulus)$

Elastic strain energy. Potential energy of loading

Minimum total potential energy principle

total potential energy: V = U - W

The displacement field $\{u\}$ that represents solution of the problem fulfils displacement boundary conditions on Γ_u and minimizes the total potential energy V.

Elastic strain energy in a finite element. Local stiffness matrix

 $\{q\}_{e = n_e \times 1}$ - local vector of nodal parameters

$$n - 1$$

$$U_{e} = \frac{1}{2} \int_{\Omega_{e}} [\varepsilon] \{\sigma\} d\Omega_{e} = \frac{1}{2} [q]_{e} \int_{\Omega_{e}} [B]^{T} [D] [B] d\Omega_{e} \{q\}_{e} = \frac{1}{2} [q]_{e} [k]_{e} \{q\}_{e}$$

$$\int_{\alpha_{e} \times 1}^{\alpha_{e}} [B]_{e} [k]_{e} [Q]_{e} [k]_{e} [Q]_{e} [k]_{e} [Q]_{e} [n_{e} \times 1]_{e} [n_{e}$$

Elastic strain energy in a finite element

local notation:

n - no. of nodes per FE $n_p - no.$ of nodal parameters per node no. of degrees of freedom in FE: $n_e = n \cdot n_p$

 $\{q\}_{e n_e \times 1}$ - local vector of nodal parameters

$$U_e = \frac{1}{2} [q]_e [k]_e \{q\}_e$$

$$\uparrow$$
cal stiffness matrix

local stiffness matrix

global notation: i+n-1 i+n-2 n_e i+1NON – no. of nodes

NON – no. of nodes n_p – no. of nodal parameters per node no. of degrees of freedom : $NDOF = NON \cdot n_p$

 $\{q\}$ - global vector of nodal parameters

$$U_e = \frac{1}{2} \cdot [q]_{1 \times NDOF NDOF \times NDOF} [k]_e^* \cdot \{q\}_{NDOF \times 1}$$

extended local stiffness matrix.

Extended local stiffness matrix of a finite element

Elastic strain energy in a FE model. Global stiffness matrix

$$\Omega = \sum_{e=1}^{NOE} \Omega_e \quad \rightarrow \qquad \qquad U = \sum_{e=1}^{NOE} U_e$$

NOE – no. of FEs *NDOF*-no. of degrees of freedom

 $\{q\}$ - global vector of nodal parameters $NDOF \times 1$

elastic strain energy in a finite element model:

$$U = \sum_{e=1}^{NOE} U_e = \sum_{e=1}^{NOE} \frac{1}{2} \cdot [q] \cdot [k]_e^* \cdot \{q\} = \frac{1}{2} [q] \cdot \sum_{1 \times NDOF}^{NOE} [k]_e^* \cdot \{q\} = \frac{1}{2} \cdot [q] \cdot [k] \cdot \{q\}$$

$$= \frac{1}{2} \cdot [q] \cdot [K] \cdot \{q\}$$

$$= \frac{1}{2} \cdot [k] \cdot [$$

Equivalent load vector

$$[F]_{e} = [F^{X}]_{e} + [F^{p}]_{1 \times n_{e}}$$

equivalent load vector due to mass forces:

$$\begin{bmatrix} F_{1 \times n_{e}}^{X} \end{bmatrix}_{e} = \int_{\Omega_{e}} \begin{bmatrix} X \\ 1 \times 3 \end{bmatrix} \begin{bmatrix} N \\ 3 \times n_{e} \end{bmatrix} d\Omega_{e} =$$

=
$$\int_{\Omega_{e}} \begin{bmatrix} X, Y, Z \end{bmatrix} \begin{bmatrix} N_{1} & 0 & 0 & N_{2} & 0 & 0 & N_{n} & 0 & 0 \\ 0 & N_{1} & 0 & 0 & N_{2} & 0 & \dots & 0 & N_{n} & 0 \\ 0 & 0 & N_{1} & 0 & 0 & N_{2} & 0 & 0 & N_{n} \end{bmatrix} d\Omega_{e}$$

equivalent load vector due to surface load:

$$\begin{bmatrix} F_{p}^{p} \end{bmatrix}_{l \times n_{e}} = \int_{\Gamma_{pe}} [p] [N] d\Gamma_{pe} =$$

$$= \int_{\Gamma_{pe}} [p_{x}, p_{y}, p_{z}] \begin{bmatrix} N_{1} & 0 & 0 & N_{2} & 0 & 0 & N_{n} & 0 & 0 \\ 0 & N_{1} & 0 & 0 & N_{2} & 0 & \dots & 0 & N_{n} & 0 \\ 0 & 0 & N_{1} & 0 & 0 & N_{2} & 0 & \dots & 0 & N_{n} \end{bmatrix} d\Gamma_{pe}$$

Potential energy of loading in a finite element

local notation:

n - no. of nodes per FE $n_p - no.$ of nodal parameters per node no. of degrees of freedom in FE : $n_e = n \cdot n_p$

 $\{q\}_{e}_{n_e \times 1}$ - local vector of nodal parameters

$$W_e = [q]_e \{F\}_e$$

equivalent load vector

Extended equivalent load vector in a finite element

extended equivalent load vector:

 ${F}_{e}^{*}$

 $NDOF \times$

$$= \begin{pmatrix} 0 & 1 \\ 0 & 2 \\ \dots & j - 1 \\ F_{1e} & j \\ F_{2e} & j + 1 \\ \dots & F_{n_e e} \\ 0 & j + n_e - 1 \\ j + n_e & j + n_e \\ 0 & \dots & j + n_e \\ 0 & NDOF \end{pmatrix}$$

(assumed ascending order of components)

Forces applied directly on nodes. Potential energy of nodal loads

potential energy of nodal loads:

$$W^n = [q] \cdot \{F\}^n_{1 \times NDOF \ NDOF \times 1}$$

Potential energy of loading in a FE model. Global load vector

Total potential energy in a FE model. Set of linear equations

Total potential energy of the entire model:

$$V = U - W = \frac{1}{2} \cdot \lfloor q \rfloor \cdot \llbracket K \rfloor \cdot \lbrace q \rbrace - \lfloor q \rfloor \cdot \lbrace F \rbrace$$

 ${q} = ?$

NOE – no. of FEs *NDOF* – no. of degrees of freedom

 $V \rightarrow min \qquad \frac{\partial V}{\partial q_j} = 0 \rightarrow \begin{bmatrix} K \end{bmatrix} \cdot \{q\} = \{F\} \\ NDOF \times NDOF \ NDOF \times 1 \ NDOF \times 1 \end{bmatrix}$ $\uparrow \\ set of linear algebraic equations$ $det ([K]) = 0 \\ NDOF \times NDOF$

Set of FE equations with boundary conditions

The displacement field $\{u\}$ that represents solution of the problem fulfils displacement boundary conditons on Γ_u and minimizes the total potential energy V.

linear set of algebraic equations with boundary conditions

Example 5. Boundary conditions for 2D problem. FE model with two 3-node triangles

1	a 1	<i>b</i> 1	С 1	d 1	<i>e</i> ₁	f_1	0	0	(,
2	b 1	g 1	h 1	i <u>1</u>	j 1	k 1	0	0		
3	C 1	h ₁	l ₁ +a ₂	m 1 + b 2	n ₁ +c ₂	o ₁ +d ₂	e ₂	f_2		
4	d 1	i 1	m 1 + b 2	p ₁ +g ₂	$r_{1} + h_{2}$	s ₁ +i ₂	j 2	k 2		
5	e 1	j 1	n ₁ +c ₂	$r_{1} + h_{2}$	$t_1 + l_2$	$\overline{u}_1 + m_2$	n ₂	0 ₂		
6	f_1	k 1	o ₁ +d ₂	$t_{1} + l_{2}$	$\overline{u}_1 + m_2$	$\overline{w}_1 + p_2$	r ₂	\$ ₂		
7	0	0	<i>e</i> ₂	j 2	n ₂	r ₂	t_2	\overline{u}_2		
8	0	0	f_2	k 2	02	\$ ₂	\overline{u}_2	\overline{W}_2		

 F_2 F_3 $v_1 = 0$ u_2 F_4 $v_2 = 0$ F_5 u_3 F_6 v_3 F_7 u_4 v_4 F_8

Example 5. Boundary conditions for 2D problem. FE model with two 3-node triangles

34

Example 5. Boundary conditions for 2D problem. FE model with two 3-node triangles

linear set of algebraic equations with boundary conditions

Solution of a set of FE equations with boundary conditions

$$\begin{bmatrix} K \\ N \times N \\ N \times 1 \end{bmatrix} = \{F\} \rightarrow \det \left(\begin{bmatrix} K \\ N \times N \end{bmatrix} \neq 0 \rightarrow \{q\} = \begin{bmatrix} K \\ N \times 1 \end{bmatrix}^{-1} \{F\}$$

$$DOF \text{ solution:} \qquad \{q\}$$

$$NDOF \times 1$$

$$Element \text{ solution } (ES):$$

$$\begin{cases} \mathcal{E} \\ \mathcal{E} \\$$

k – no. of elements adjacent to node (i)

Example 6. Reactions calculation for 2D problem. FE model with two 3-node triangles

1	a 1	b 1	С 1	d ₁	e 1	<i>f</i> 1	0	0		
2	<i>b</i> 1	g 1	h ₁	i <u>1</u>	j ₁	k 1	0	0		l
3	С 1	h ₁	l ₁ +a ₂	m 1 + b 2	n ₁ +c ₂	o 1 + d 2	e ₂	f_2		
4	d 1	i <u>1</u>	m 1 + b 2	p ₁ +g ₂	$r_1 + h_2$	s ₁ +i ₂	j ₂	k 2	J	l
5	<i>e</i> ₁	j 1	n ₁ +c ₂	$r_{1} + h_{2}$	$t_1 + l_2$	$\overline{u}_1 + m_2$	n ₂	0 ₂	$\left \right\rangle$	
6	f_1	k 1	o 1 + d 2	$t_{1} + l_{2}$	$\overline{u}_1 + m_2$	$\overline{w}_1 + p_2$	r ₂	s ₂		
7	0	0	e ₂	j 2	n ₂	r ₂	t 2	ū 2		
8	0	0	f_2	k 2	02	\$ ₂	\overline{u}_2	\overline{w}_2		

 $\begin{array}{c}
u_{1} = 0 \\
v_{1} = 0 \\
u_{2} \\
v_{2} = 0 \\
u_{3} \\
v_{3} \\
u_{4} \\
v_{4}
\end{array} + \left\{ \begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4} \\
F_{5} \\
F_{6} \\
F_{7} \\
F_{8}
\end{array} \right\}$

Example 7. DOF solution u(x,y) for 2D problem. FE model with 4-node quadrilateral elements

$$\{u\}_{2\times 1} = [N]_{2\times 8} \{q\}_{e}_{8\times 1}$$

 $u_e(x, y)$ – displacement in x direction

Example 8. Strain component $\varepsilon_y(x,y)$ for 2D problem. FE model with 4-node quadrilateral elements

$$\varepsilon_{y_i^{AVE}} = \frac{\varepsilon_{y_1}(x_i, y_i) + \varepsilon_{y_2}(x_i, y_i) + \varepsilon_{y_3}(x_i, y_i) + \varepsilon_{y_4}(x_i, y_i)}{4}$$

Accuracy of FEM calculations a real phenomenon modelling error continuous mathematical model **EXACT SOLUTION OF A MATHEMATICAL MODEL** discretization error =**Discrete model EXACT SOLUTION OF A DISCRETE MODEL** numerical error total error NUMERICAL RESULT

total error = modelling error + discretization error + numerical error

modelling error \approx discretization error \approx numerical error \rightarrow min